9 Şubat 2014 Pazar

ÜNLÜ SAYILAR

SIFIR
Sıfır(0) Arapça şafira ya da şifr , Sanskritçe sünya, İngilizce zero(nil-null). Boş, hiç olan; ya da herhangi bir şey olmayan. Batı dillerindeki şifre sözcüğünün kökeni. Günümüz sayı sisteminin merkezine, hangi serüvenleri izleyerek gelip oturduğu aşağı yukarı biliniyor. Matematiğin tarihi,bu sayının, Hint kökenli olduğundan hemen hemen emin. Basamak yerine ilk kullanımı, çok eskilere gitmesine rağmen, bu günkü anlamdakine en yakın kullanımı, Hint matematikçi Brahmagupta'nın Brahmasputha Siddhanta adlı eserinde anlatılmaktadır. MS 628 tarihini taşıyan bu eserinde Brahmagupta, sıfır ile dört işlemin kurallarını sıralar. Toplama, çıkarma ve çarpmada sorunsuz sıyrılan Brahmagupta, bölmede zorlanmaktadır. Şöyle diyor: 
"-Herhangi bir pozitif ya da negatif sayının sıfır ile bölünmesi durumunda, sonuç paydasında sıfır bulunan bir kesirdir". 
"-Herhangi bir pozitif ya da negatif sayı tarafından bölünen sıfır, ya sıfırdır veya payında sıfır, paydasında bir sayı bulunan kesirdir."
"-Sıfır bölü sıfır, sıfırdır."
Daha sonraki yıllarda tanımsız olarak kabul edilen sıfırla bölme işlemi gerçekten hala kafalarımızı karıştırmaya devam ediyor. Halbuki sıfır'ın bir sayıyla bölünmesinde hiçbir sorun yok. Sıfır bölü sıfır ise sıfır değil; o da tanımsız. 
Günümüzde kullandığımız sayı sistemine Hint-Arap sayı sistemi diyoruz. Ondalık basamaklı sayı sistemi, Hindistan'dan Arap yarımadasına, oradan da İslam İmparatorluğu'nun genişlemesine parelel olarak Kuzey Afrika ve Endülüs üzerinden Avrupa'ya ulaşmıştır. Kendisi Becaiye'de (Cezayir) yetişmiş olan ünlü matematikçi Fibonacci, 1202 de yayınladığı Liber Abaci adlı eserinde bu sistemi Avrupa'ya tanıtmıştır.



Pİ SAYISI:

Bir çemberin çapı 1 olduğunda, çevresi Pi'ye eşittir.
Pi nedir:
Matematikçi: "Pi, bir dairenin çevresinin çapına oranıdır."
Bilgisayar Programcısı: "Pi 3,14159265389 dur"
Fizikçi: "3,14159artı eksi 0,000005'tir"
Mühendis: "Yaklaşık 22/7'dir"
**Bilindiği gibi Pi, sonsuz bir rakamlar dizisi. Belirli bir düzende kendisini tekrarlamayan sonlu bir çok alt dizilerden oluşur. Bu sonlu alt dizilerin kümesi, hemen tahmin edebileceğiniz üzere, sonsuz eleman taşımakla kalmaz, aynı zamanda muhtemel bütün sonlu alt dizileri de içinde taşır. Bu özelliği nedeniyle de sizin ya da sevgilinizin doğum gününü ggaayy veya ggaayyyy gibi bir dizin olarak yazdığınızda, bunun pi'nin içinde olduğundan emin olabilirsiniz

Hiç yorum yok:

Yorum Gönder

Buradan Yorum Yapabilirsiniz.